Identification of the chromosome localization domain of the Drosophila nod kinesin-like protein
نویسندگان
چکیده
The nod kinesin-like protein is localized along the arms of meiotic chromosomes and is required to maintain the position of achiasmate chromosomes on the developing meiotic spindle. Here we show that the localization of ectopically expressed nod protein on mitotic chromosomes precisely parallels that observed for wild-type nod protein on meiotic chromosomes. Moreover, the carboxyl-terminal half of the nod protein also binds to chromosomes when overexpressed in mitotic cells, whereas the overexpressed amino-terminal motor domain binds only to microtubules. Chromosome localization of the carboxyl-terminal domain of nod depends upon an 82-amino acid region comprised of three copies of a sequence homologous to the DNA-binding domain of HMG 14/17 proteins. These data map the two primary functional domains of the nod protein in vivo and provide a molecular explanation for the directing of the nod protein to a specific subcellular component, the chromosome.
منابع مشابه
DNA binding and meiotic chromosomal localization of the drosophila nod kinesin-like protein
The Drosophila no distributive disjunction (nod) gene encodes a kinesin-like protein that has been proposed to push chromosomes toward the metaphase plate during female meiosis. We report that the nonmotor domain of the nod protein can mediate direct binding to DNA. Using an antiserum prepared against bacterially expressed nod protein, we show that during prometaphase nod protein is localized o...
متن کاملATPase Cycle of the Nonmotile Kinesin NOD Allows Microtubule End Tracking and Drives Chromosome Movement
Segregation of nonexchange chromosomes during Drosophila melanogaster meiosis requires the proper function of NOD, a nonmotile kinesin-10. We have determined the X-ray crystal structure of the NOD catalytic domain in the ADP- and AMPPNP-bound states. These structures reveal an alternate conformation of the microtubule binding region as well as a nucleotide-sensitive relay of hydrogen bonds at t...
متن کاملReciprocal localization of Nod and kinesin fusion proteins indicates microtubule polarity in the Drosophila oocyte, epithelium, neuron and muscle.
Polarization of the microtubule cytoskeleton is an early event in establishment of anterior-posterior polarity for the Drosophila oocyte. During stages 8-9 of oogenesis, when oskar mRNA is transported to the posterior pole of the oocyte, a fusion protein consisting of the plus-end-directed microtubule motor kinesin and beta-galactosidase (Kin:beta gal) similarly localizes to the posterior pole,...
متن کاملIdentification of trans-acting genes necessary for centromere function in Drosophila melanogaster using centromere-defective minichromosomes.
Deletions in the Drosophila minichromosome Dp1187 were used to investigate the genetic interactions of trans-acting genes with the centromere. Mutations in several genes known to have a role in chromosome inheritance were shown to have dominant effects on the stability of minichromosomes with partially defective centromeres. Heterozygous mutations in the ncd and klp3A kinesin-like protein genes...
متن کاملDrosophila Nod protein binds preferentially to the plus ends of microtubules and promotes microtubule polymerization in vitro.
Nod, a nonmotile kinesin-like protein, plays a critical role in segregating achiasmate chromosomes during female meiosis. In addition to localizing to oocyte chromosomes, we show that functional full-length Nod-GFP (Nod(FL)-GFP) localizes to the posterior pole of the oocyte at stages 9-10A, as does kinesin heavy chain (KHC), a plus end-directed motor. This posterior localization is abolished in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 131 شماره
صفحات -
تاریخ انتشار 1995